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In this chapter we will review some of the evidence of the critical  
role of environmental factors in common forms of dementia, 
and in cognitive decline more generally. While a comprehensive 

review of the literature is beyond the scope of this report, we have 
tried to clarify some of the key drivers. We have limited this review 
to environmental chemicals, nutrition, health and social conditions, 
and exercise. We have not considered the potential role of infectious 
agents, cigarette smoking, caffeine, drugs of abuse, estrogen, and 
pharmaceuticals, among other factors.

As discussed in chapter 5, a growing body of evidence suggests 
that various forms of neurodegeneration and associated symptoms may  
be viewed as a continuum. In this chapter we treat several common 
forms of dementia in particular as a continuum. Likewise, the lack of 
clear distinction between normal aging, abnormal cognitive decline, and 
dementia—in both symptoms and histopathology1—suggests that the 
degree of impairment can also be viewed as a spectrum.

In this chapter, we represent this spectrum of common 
dementias with the compound term “Alzheimer’s disease/dementia.” 
This allows us to discuss environmental factors that influence 
the larger spectrum of inter-related conditions and acknowledges 
frequently overlapping or mixed pathology. Similarly, we represent 
the spectrum of clinical severity with the terms “Alzheimer’s disease/
cognitive decline” or “dementia/cognitive decline.” These broadly 
framed terms are consistent with the emerging view that cognitive 
decline—and the dementia it may lead to—are products of multiple 
interacting environmental and genetic influences. The wide variety 
of these influences is reflected in a continuum of pathologies and 
symptoms across diagnostic categories and degrees of severity.

We begin by addressing several preliminary subjects that 
provide a context for discussing environmental influences: the  
clinical picture of Alzheimer’s/dementia, known genetic causes,  
and gene-environment interactions.
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alzheimer’s Disease and Dementia—Clinical Features

In the clinical setting, Alzheimer’s—like other forms of dementia—
is defined as a decline in multiple cognitive functions, including 
memory, that is severe enough to interfere with daily function-

ing. The typical early symptoms, as defined by current convention, 
are difficult to distinguish from “normal” aging: gradual onset of 
short-term memory problems, language and visual-spatial percep-
tion difficulties, and declining executive function, including organi-
zational abilities and efficiency. By definition, however, symptoms 
that tend to be sporadic, can be compensated for, and are generally 
non-progressive are considered normal aging. Symptoms that worsen 
over time and impair basic functions—such as speech fluency and the 
ability to prepare a meal or pay a bill—are by definition character-
istic of dementia. Since the progressive nature of symptoms is key to 
the diagnosis, the determination that someone has dementia cannot 
be made at the onset of symptoms. Distinguishing normal aging from 
early dementia in practice is often very difficult.

The frequency of dementia is strongly related to age, with the 
prevalence nearly doubling every five years, from about 1.5 percent 
in 60–69-year-olds to 40 percent in 80–89-year-olds.2 According to 
the conventional classification, Alzheimer’s is the most common form 
of dementia, followed by vascular dementia, Lewy body dementia, 
and frontotemporal dementia.3 (See chapter 5.)

Genetic Factors in alzheimer’s Disease
Inherited, early-Onset alzheimer’s

Several genetic mutations increase amyloid-beta production or 
processinga and are associated with early-onset, familial forms 
of Alzheimer’s disease—generally before age 60. Amyloid-

beta is the primary constituent of extracellular plaques, typically 
considered one of the two pathological hallmarks of Alzheimer’s 
disease, whether inherited or sporadic. The extent to which plaques 
and tangles (the other pathological hallmark), are responsible for 
neuron degeneration or merely markers of other fundamental  
processes gone awry continues to be debated, particularly with 
regard to the more common, late-onset form of the disease.

Amyloid-beta is generated by the cutting of a larger amyloid 
precursor protein by two enzymes, (beta and gamma secretase), a 

a by the gamma-secretase enzyme
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process that occurs in all cells in the body for reasons that are as yet 
unknown.4 This process is increased in the aging brain, and much 
more so in the Alzheimer’s brain. Once cut, fragments of amyloid-
beta that lie outside the cell may aggregate into small, soluble mol-
ecules (oligomers) which can further concentrate into fiber-like 
structures. Oligomers are toxic to cultured neurons5 6 and interfere 
with learning and memory in studies with laboratory mice. 7

Down syndrome, a genetic disorder caused by the presence of an 
extra chromosome (number 21) in the cells of affected individuals, also 
carries an increased risk for early-onset Alzheimer’s disease and demen-
tia.8 Down syndrome is characterized by intellectual disabilities and vari-
ous metabolic abnormalities. Postmortem examination of the brains of 
people with Down syndrome almost universally show amyloid plaques 
and tau tangles characteristic of Alzheimer’s disease, beginning as early 
as age 8,9 as well as evidence of excessive oxidative stress and lipid per-
oxidation.10 11 As in the general population, however, some people with 
Down syndrome with extensive amyloid-beta plaque formation survive 
into their seventies without evidence of dementia.

Several genes on chromosome 21 are likely to increase 
Alzheimer’s disease risk. Their over-expression in people with Down 
syndrome, because of an extra copy of the chromosome, may help 
to shed light on the origins of Alzheimer’s disease more generally. 
The amyloid precursor protein gene is located on chromosome 21 
and its over-expression leads to excessive production of that protein. 
A nearby gene is responsible for producing a protein that influences 
cholesterol transport within the cell and appears to increase the 
likelihood that amyloid-beta plaques will form from the excessive 
levels of amyloid precursor protein.12 A third nearby gene is respon-
sible for producing the enzyme superoxide dismutase (SOD1). Over-
expression of SOD1 contributes to an enzyme imbalance that results 
in excessive free-radical production, oxidative stress, and damage to 
critical cellular components.13 One study concludes that excessive 
oxidative stress precedes the onset of plaque formation in people 
with Down syndrome.14

Individuals carrying the early-onset Alzheimer’s genes have 
a high incidence of the disease and are affected at a relatively early 
age. However, these early-onset, genetically determined cases of the 
disease constitute a very small portion—between 4 and 6 percent—
of all Alzheimer’s cases.15
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Genetics of Sporadic, Late-Onset alzheimer’s  
Disease—apoe4
The more common, late-onset, sporadic form of Alzheimer’s has no 
known genetic causes. However, the ApoE4 gene, according to most 
studies in the developed world,16 17 18 increases the risks of developing 
Alzheimer’s disease/dementia. At least one copy of the ApoE4 gene 
is typically reported to be present in about 15 percent of the US 
population19 and in 5–41 percent of various populations around the 
world.20 One meta-analysis found the risk of Alzheimer’s disease in 
Caucasians to be increased approximately threefold in those carrying 
one copy (also called carriers, or heterozyotes) and nearly 15-fold 
in those carrying two copies (homozygotes) of the ApoE4 gene.21 
The risks among African Americans varied more between studies, 
averaging a 1.1 and 5.7-fold increase for African Americans carrying 
one and two copies of the gene, respectively. ApoE4 is also associated 
with a number of abnormalities in cognitive function in subjects 
without Alzheimer’s disease.

Interestingly, the ApoE4 gene is also commonly (though not 
uniformly) associated with a variety of other diseases and conditions 
including vascular dementia, mild cognitive impairment,22 23 elevated 
LDL cholesterol,24 and cardiovascular disease.25 26 27 One meta-analysis 
found the cardiovascular risk in ApoE4 carriers increased 1.42-fold.b 28

The ApoE gene plays a key role in lipid transport and processing. 
The ApoE lipoprotein that the gene produces carries lipid in the blood as 
well as in the brain, where it also transports and clears amyloid-beta.c 29 30

Beyond the Gene-environment Dichotomy:  
Gene-environment Interactions

health and disease in the brain, as in any organ system, are 
influenced by multiple factors. By tradition, these factors are 
typically divided into genetic and environmental influences. 

In some cases, where a genetic or environmental influence is truly 
determinative, this dichotomy holds up.d More often, however, 
genetic and environmental influences interact.e

b The increased risk was relative to the more common ApoE3 genotype.
c ApoE in the brain is produced by astroglia and microglia, and ApoE receptors are 
expressed by neurons.
d An example is infantile Tay Sachs Disease, which is caused by a genetic error in fatty acid 
metabolism and is invariably fatal within the first few years of life.
e This is illustrated by the PKU (phenylketonuria) gene, which causes mental retardation in the 
context of a conventional diet. Importantly, by removing the amino acid phenylalanine from 
the diet beginning in infancy, (i.e. altering the environment), mental retardation is prevented. 
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The ApoE4 gene provides an example of complex gene-
environment and gene-gene-environment interactions. As mentioned 
above, ApoE4 increases risks for Alzheimer’s and cardiovascular 
(among other) diseases, and Western lifestyle factors are emerg-
ing as key to these risks. This is illustrated in a 21-year Swedish 
observational study. It found that ApoE4 alone increased the risk 
for dementia/Alzheimer’s disease by a factor of 2.83. When interac-
tions with lifestyle factors were considered, the ApoE4-environment 
interactions increased the risk by a factor of 11.42. Environmental 
factors increasing risk included physical inactivity, alcohol drinking, 
smoking, and Western-type diet (specifically reduced intake of poly-
unsaturated fat and increased intake of saturated fat). The authors 
concluded that lifestyle interventions may greatly modify dementia 
risk, particularly among genetically susceptible individuals.31

A small body of cross-cultural epidemiologic studies also 
supports the view that Western lifestyle, including diet, is a key 
driver of ApoE4-associated risks. Several studies of Alzheimer’s/
dementia in Nigerian-Yoruba elders—who consume a low-fat, low-
calorie, and predominantly plant-based diet32 —found no significant 
association between ApoE4 and Alzheimer’s/dementia. They also 
showed much lower age-adjusted rates of dementia/Alzheimer’s 
disease. These findings contrasted sharply with the African-American 
control population in this study, which showed higher age-adjusted 
incidence of Alzheimer’s and a significant association of ApoE4 with 
the disease.33 34 35 36 37 f

Adding complexity, the ApoE-saturated fat interaction, men-
tioned above, can be further modified by additional genetic influ-
ences (for example, variations in an ApoE promoter gene).38 Such 
gene-gene-diet interactions may explain inconsistent findings among 
previous studies examining ApoE4 as a risk factor for a variety of 
conditions. This also illustrates a more general point that the risk of 
many diseases is influenced by multiple genes and multiple environ-
mental factors. These multiple factors constitute a virtual sea of con-
ditions in which the influence of single factors may vary considerably.

Several large longitudinal studies have found that ApoE4 
increases the risk of cognitive decline associated with atherosclerosis, 
peripheral vascular disease, and diabetes.39 40 Interestingly, one study 
examining the role of ApoE4 in chronic occupational lead exposure 
found that ApoE4 increased the adverse effect of lead on neurobe-
havioral function, including memory.41 Each of these factors will be 
discussed below.

f While the two populations had similar ApoE gene frequencies, the influence of other 
genetic factors cannot be ruled out as contributing to the different Alzheimer’s/dementia 
rates in these two populations.
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Thus the effects of ApoE4 on the risks of Alzheimer’s 
disease/cognitive decline increasingly appear to be influenced by 
environmental factors. The data suggest that modifying environmental 
factors may prevent the risks associated with ApoE4 and potentially 
a major portion of the Alzheimer’s/dementia burden. Additional 
studies, discussed below, provide abundant evidence of environmental 
influences independent of ApoE4-related mechanisms as well.

We now turn more specifically to environmental contributions 
to Alzheimer’s/dementia and cognitive decline.

environmental Chemicals

relatively few studies have examined the influence of toxic 
chemical exposures on the risk of dementia/cognitive decline. 
Nonetheless, evidence has begun to develop. Studies implicating 

lead, pesticides, PCBs, particulate air pollution, and aluminum have 
recently been published. In one recent study, 21 percent of more than 
a thousand patients presenting to a university clinic for cognitive 
disorders had histories suggestive of toxic environmental and occu-
pational exposures. A history of toxic exposure significantly lowered 
the age of onset of cognitive decline, an effect equivalent in magni-
tude to that caused by carrying two copies of the ApoE4 gene.42

Lead
Lead is toxic to multiple organ systems, including the brain. Low-
level lead exposures can impair cognitive function in children. Evi-
dence indicates there is no exposure threshold below which harmful 
effects do not occur. Extensive evidence also shows that past adult 
lead exposure in the work setting increases the likelihood of cognitive 
impairment.43 44 More recently low-level cumulative exposure to lead 
outside of the work setting has been shown to adversely affect cogni-
tive function including visual-spatial/visual-motor function, language, 
processing speed, executive function, verbal memory and learning, 
and visual memory.45 One longitudinal study divided a population  
of elderly men into four groups (quartiles), based on the amount of 
lead found in patella bone. It found each quartile increase in bone 
lead was associated with approximately five years of additional 
cognitive aging as measured by the Mini-Mental Status Exam. This 
suggests that lead has a substantial impact on cognitive aging across 
the population. 46

A variety of mechanisms may contribute to lead neurotoxicity. 
In its various forms, lead can cross the blood-brain barrier, disrupt 
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calcium-dependent enzymes and neurotransmitter metabolism47 
and release, and cause neuronal oxidative stress48 and aggregation 
of amyloid-beta .49 In addition, lead impairs synaptic transmission 
and plasticity,50 oxidative phosphorylation, glucose oxidation, 
and microtubule synthesis,51 among other effects. Lead has also 
been shown to preferentially affect the prefrontal cerebral cortex, 
hippocampus, and cerebellum.52

Another mechanism has recently been proposed whereby 
early-life lead exposure may contribute to late-life neurodegenera-
tion. The mechanism—referred to as Latent Early-Life Associated 
Regulation, or LEARn—is suggested by a series of studies by Basha, 
Zawia, and others in rodents and monkeys. LEARn is an example of 
a more general phenomenon whereby early life conditions predispose 
to adult disease. In this instance, exposing fetal rodents to lead caused 
brief increases during neonatal life in key Alzheimer’s disease–related 
proteins. This was followed by delayed over-expression of these pro-
teins and amyloid-beta in late life—long after early lead exposure had 
ceased. Interestingly, exposure to lead during old age did not cause 
increases in the Alzheimer’s disease–related proteins.

Recently the same delayed, late-life increase in Alzheimer’s 
disease–related proteins was reported in aged monkeys exposed 
in infancy to low levels of environmental lead. In addition, these 
monkeys showed Alzheimer’s (amyloid) plaques in the frontal 
association cortex, an Alzheimer’s disease–related brain region, 
as well as biochemical evidence of epigenetic imprinting.g 53 Taken 
together, these data suggest that early developmental lead exposure 
may lead to increased expression of amyloid precursor protein later 
in life, increasing amyloid-beta production.54 55 While lead’s role as 
a developmental toxicant has been evident for nearly a century, the 
neurodegenerative toxicity of lead in the brainh has only come into 
focus in the past decade or so. Thus, lead may now be considered a 
lifecycle neurotoxicant.

aluminum
Dietary exposure to aluminum salts is nearly universal in the devel-
oped world as they are commonly added to commercially prepared 
foods and beverages. They are sometimes used to clarify drinking 
water, make salt free-pouring, color snack and dessert foods, and 
make baked goods rise.56

g The evidence of epigenetic imprinting included decreased DNA methyltransferase activity 
and higher levels of oxidative damage to DNA.
h It has long been known that lead causes impairment of peripheral nerves, which are  
outside of the brain.
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The possible role of aluminum in Alzheimer’s disease/dementia 
has been debated since 1965 when controversial evidence emerged 
showing that aluminum injections into the brain caused neurofibrillary 
tangle–like pathology. (The relevance of this data to human disease is 
questionable, given the high dose and route of exposure.)

Several studies conducted in recent years have resurrected old 
questions about the potential for aluminum to contribute to neuro-
degenerative disease. One recent small pilot study in rats showed that 
chronic exposure to dietary aluminum at doses within the range of 
the human exposure spectrum was associated with aluminum accu-
mulation in hippocampal neurons.57 A larger follow-up study in rats 
showed a dose-response relationship between dietary aluminum and 
memory loss. 58 The exposure level at which memory loss began to 
increase (0.49 mg aluminum/kg/day) was well within the range of 
human dietary exposure. Though estimates vary, one exposure study 
found that half of Americans ingest 0.34 mg aluminum/kg/day or 
less, 45 percent ingest 0.34–1.36 mg/kg/day, and 5 percent take in 
more than 1.36 mg/kg/day as additives in commercially processed 
foods and beverages.59 A recent analysis of aluminum content of 
foods found that some varieties of baking powder, pancake/waffle 
mixes and frozen products, and ready-to-eat pancakes contained the 
most aluminum of foods tested. The aluminum contained in a single 
serving of some pancakes 60 61 (up to 180 mg of aluminum, or 3 mg/
kg for a 60 kg person), was the equivalent of five times the dose 
associated (when ingested chronically) with older-age memory loss 
in the rat study.i 62 This suggests that consuming the high-aluminum 
varieties of these foods on a daily basis could lead to exposures well 
above the level at which age-associated memory loss was observed in 
the rat study.

In another study, brain specimens from rats chronically 
exposed to high-end human levels of aluminum exposure showed 
microscopic changes commonly regarded as components of plaque 
and tangle formation.j 63 64

A recent laboratory study found that exposure of human neural 
cells to nanomolar concentrations of aluminum induced gene expres-
sion promoting inflammation and cell death, similar to that observed 

i Since the determinants of aluminum absorption are not yet fully understood, it is difficult 
to predict the aluminum exposure from aluminum content of a meal. 
j The brain histopathology of exposed rats included oxidative damage, inhibition of PP2A 
(protein phosphatase 2A) activity, hyperphosphorylated tau, and granulovacuolar degenera-
tion. PP2A is a major phosphate-removing enzyme in the brain which is active against tau 
and neurofilament hyper-phosphorylation. Plaques and tangles per se do not develop in rats.
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in Alzheimer’s disease. k l 65 While this supports a possible role for alu-
minum in Alzheimer’s disease/dementia, the relevance of this laboratory 
observation to real world conditions is not yet established.

Thus, recent evidence reopens a debate and rekindles concerns 
that current dietary exposures to aluminum may increase the risk 
of dementia/Alzheimer’s disease. It should be noted that aluminum 
absorption is complex and influenced by many factors—including 
pH, the molecular state of aluminum, other nutrients in the food, 
and possibly unidentified host factors.66 67 68 Because the quantity of 
aluminum ingested is not by itself a predictor of aluminum absorp-
tion, identifying safe dietary limits is difficult. Nonetheless, the new 
animal data and current dietary levels of aluminum exposure create 
an urgent need for additional research and dietary guidelines. Both 
the European Food Safety Authority and the Joint Food and Agricul-
ture/WHO Expert Committee on Food Additives recently lowered 
their recommended safe upper limit (provisional tolerable weekly 
intake) for aluminum from 7 mg/kg/week to 1 mg/kg/week.69 70  
This new limit is 7 times more protective than the current US  
recommended limit (minimal risk level) of 1 mg/kg/day.71

Iron, Copper, Zinc
Iron, copper, and zinc are biologically essential and are normally 
present in the brain, although their levels are fairly tightly regulated 
through mechanisms that are not well understood.72 73 In addition, iron 
accumulates in the same areas of the brain in which the amyloid-beta 
peptide accumulates.74 When controls fail, these metals can increase 
oxidative stress by catalyzing the production of free radicals directly75 
or by binding amyloid-beta and thus catalyzing the production of free 
radicals.76 While the links among metals, oxidative stress, and amyloid-
beta provide plausible general mechanisms whereby these metals may 
cause neurodegenerative disease, few details are known. In addition, 
few epidemiologic studies have examined the possible contribution 
of biologically essential metals to Alzheimer’s disease/dementia. (See 
chapter 8 for discussion of Parkinson’s disease risk.)

air pollution
While air pollution is often thought of as harmful mainly to the 
lungs, a large body of evidence indicates that the cardiovascular 
system is also vulnerable to the effects of air pollution.77 Emerging 
evidence suggests that air pollution contributes to brain inflammation 

k This study used DNA microarray data.
l Increased expression was observed for: NF-kB subunits, IL-1B precursor, cytosolic phos-
pholipase A2, cyclooxygenase 2, and amyloid precursor protein).
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and the risk of Alzheimer’s-type neurodegenerative 
disease as well.

Air pollution is a complex mixture of gases 
(notably ozone, carbon monoxide, and nitrogen and 
sulfur oxides), metals (e.g., lead, manganese), volatile 
organic compounds from industrial and vehicular 
sources, particulates, and lipopolysaccharide (LPS), 
among other constituents. While many of these 
components have been linked with illnesses, recent 
evidence incriminates particulate matter in a variety 
of diseases in several organ systems.78 Particulates are 

a complex mix of solids and liquids (including organic and elemental 
carbon, nitrates, sulfates, and metals) in various sizes ranging from  
a few nanometers (billionths of a meter) to 10 microns (millionths  
of a meter) in diameter. The major human source of air pollution in 
the modern world is the burning of fossil fuels in motor vehicles and  
by industry.79

Studies demonstrate a variety of cardiovascular effects from 
both short- and long-term exposures to particulates—even at present 
day levels—including reduced oxygen supply to the heart (myocar-
dial ischemia) and heart attacks, heart failure, stroke, arrhythmia 
and sudden death, cardiovascular hospitalization and mortality, and 
venous thrombosis (blood clots).80 81

While the risk to any one person from air pollution at a given 
point in time is small, the pervasive, constant nature of the exposure 
results in profound health impacts on the population as a whole. 
Though the full extent of the consequences of air pollution are still 
uncertain, known adverse impacts on health already place the par-
ticulate component alone as the thirteenth leading cause of global 
mortality, causing approximately 800,000 deaths per year.82

A growing body of evidence has begun to link air pollution 
with neurodegenerative disease. This evidence includes human and 
animal studies that combine histopathology, neuroimaging, cognitive 
testing, and limited epidemiology. Much of this evidence is drawn 
from recent postmortem studies comparing brain tissue from lifelong 
residents of cities with severe air pollution with brain tissue from 
lifelong residents of low-air-pollution cities. (All of the individuals in 
the studies had been free of neurologic disease or symptoms before 
death, and had died sudden, non-neurologic deaths.) These studies 
showed evidence of inflammation and Alzheimer’s type brain tissue 
pathology in the residents of polluted-air cities, compared to the resi-
dents of relatively clean-air cities. The pathology included numerous 
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inflammatory markers,m accumulation of amyloid-betan (one of the 
key protein markers of Alzheimer’s disease), inflammatory activation 
of endothelium (the cells lining the inside of blood vessels), oxidative 
stress, and inflammatory cells.83 84

Particulate matter has been seen in red blood cells (erythrocytes)  
in blood vessels within the braino 85 (and other organs), and in 
inflammatory cells within brain tissue surrounding the blood vessels.86 
The studies also showed disruption of the blood-brain barrier in resi-
dents of polluted-air cities, potentially allowing inflammatory media-
tors and ultrafine air pollution particles access to the brain from the 
bloodstream.p In addition, ultrafine pollution particles were identified 
in olfactory bulb neurons, a potential conduit for selected toxicants 
to travel from the nose to the brainq without the interference of the 
blood-brain barrier.87 Whether particulate matter or other toxicants 
can actually move from the olfactory bulb to other areas of the brain 
in humans is not yet known. 88 89 90 This question is of particular 
interest because some olfactory pathways lead to areas of the brain 
that are key to learning and memory (including the entorhinal cortex 
and the amygdala).91

Ultrafine particles that penetrate deeply into the lungs initi-
ate an inflammatory response and may be absorbed directly into the 
circulating blood.r 92 Similarly, particle deposition in the nose causes 
inflammation and disruption of the olfactory barrier—potentially 
facilitating the transport of toxicants into the olfactory bulb.

Amyloid-beta was seen in 100 percent of young carriers of the 
ApoE4 gene (genotype ApoE4/3) from highly polluted areas, com-
pared with 58.8 percent of ApoE3/3 subjects.s 93 This suggests that 
people carrying ApoE4 may be more susceptible to inflammatory 
neurodegeneration associated with air pollution. Alpha-synuclein, a 

m Inflammatory markers included increased COX2 expression, IL-1B, and CD14.
n Amyloid-beta accumulation was documented in the frontal cortex, hippocampus  
and/or olfactory bulb.
o Inflammatory mediators—such as TNF-alpha or IL-1B—in the blood or endothelium can 
be transmitted across the blood-brain barrier into the brain. 
p Ultrafine particulates are <100 nm in diameter. Only these very tiny particulates are small 
enough to pass from the lung into the bloodstream, and from there to potentially cross the 
blood-brain barrier.
q The olfactory pathway provides access in particular to areas of the brain that are critical 
for learning and memory.
r Particulate air pollution is highly inflammatory at the level of the lung and brain due to 
several inflammatory components. These components include bacterial lipopolysaccharide, 
known to stimulate the innate immune response (via toll-like receptors, as discussed in chapter 
6). Particulate air pollution also contains combustion-derived heavy metals such as nickel and 
vanadium, which can also provoke inflammatory responses.
s Two-thirds of non-ApoE4 subjects from Mexico City showed amyloid-beta staining,  
compared to none of the non-ApoE4 subjects from non-air polluted cities.
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pathological marker of Parkinson’s disease, 
was also seen at a relatively high rate (23.5 
percent) in young subjects from polluted 
cities. (See chapter 8.)

The authors concluded that expo-
sure to air pollution is associated with neu-
roinflammation, an altered innate immune 
response in the brain, and accumulation of 
amyloid-beta as well as alpha-synuclein start-
ing in childhood. They suggest that exposure 
to air pollution should be considered a risk 
factor for Alzheimer’s and Parkinson’s dis-
eases. They also note that the ApoE4 gene 
may increase the risk of developing Alzheim-
er’s disease in an air-polluted environment.94

In a separate study, children from 
highly polluted Mexico City, compared 
with controls from a low-pollution city, 
showed a high incidence of cognitive 
deficits on psychometric testing as well as 
brain abnormalities in the prefrontal region 

on MRI.t Similar MRI lesions were found in dogs from highly pol-
luted areas. The lesions were associated on postmortem exam with 
neuroinflammation, ultrafine particulate matter deposition, and glio-
sis (proliferation of astrocytes, indicating neuronal injury).95 u This 
suggests that brain inflammation linked with air pollution begins 
at an early age and is associated with early cognitive impairment. It 
should be noted that these studies do not tell us which air pollutants 
are responsible for the observed effects.

Animal studies with allergic96 v or genetically vulnerable97 w mice 
have demonstrated increased brain inflammation following short-term 
exposure to concentrated air particulates.x Each of these conditions 
facilitates the breakdown of respiratory epithelium by air particulates 
or other pollutants. When this barrier is disrupted, inflammatory 
mediators and particulate matter can more easily pass through to the 
systemic circulation, thereby facilitating access to the brain.98

Inside the brain, inflammatory cytokines activate microglia, 
a potent agent of neurodegeneration.99 Elevated cytokines have also 

t The MRI abnormalities were white matter hyperintense lesions.
u These abnormalities were also associated with subcortical vascular pathology.
v Allergic airway sensitivity in this model was induced by sensitizing the mice to inhaled ovalbumin.
w Mice that are genetically modified to lose their ApoE gene (so-called ApoE knockouts) 
have increased oxidative stress.
x The exposure took place for two to five weeks, lasting 15-20 hours/week.

From the Smoke Stack to Your Brain
Air Pollution is Linked to Brain Inflammation 
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be a comprehensive or literal representation of these processes. 
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been found to increase the expression of an enzyme (COX2) in the 
capillary lining (endothelium) of the brain, which produces the highly 
inflammatory prostaglandin, PGE2. Recent evidence links PGE2 with 
stimulation of amyloid-beta production, providing another possible 
mechanism that may connect inflammatory particulate air pollution 
with Alzheimer’s disease.y 100 101 102

Since PGE2 is derived from omega-6 fatty acids, the relatively 
high omega-6 fatty acid content of the Western diet (along with the 
low omega-3 content) may intensify PGE2 production, increasing 
amyloid-beta formation and the risk of Alzheimer’s disease. The 
influence of omega-3 and omega-6 fatty acids in neurodegenerative 
disease is discussed further in the nutrition section below.

This evidence is consistent with the established link between 
air particulates and inflammatory injury to the lung, nose, blood 
vessels, and heart. These studies suggest that air pollution causes 
inflammation in the brainz and is likely to be contributing to the high 
prevalence of neurodegenerative diseases in the modern world

pCBs and persistent Organic pollutants
PCBs are industrial chemicals that were used for many years in a 
variety of applications, including as paint additives, lubricants, and 
insulators in electrical equipment. They were banned from production 
in 1977 in the US because of evidence that they could cause cancer. 
Subsequently, PCBs were found to interfere with normal brain devel-
opment and thyroid hormone function.103 PCBs continue to contami-
nate the general environment because they are persistent and not easily 
broken down. Since they are fat soluble and bioaccumulative, they also 
contaminate the general food supply though levels have been falling. 
Biomonitoring data from the Centers for Disease Control show that 
human PCB levels in the general population have also been falling 
since the ban, though they remain a contaminant of concern.

While there is extensive epidemiology demonstrating the toxicity  
of PCBs on the developing brain, to our knowledge only three published  
epidemiologic studies have explored the effects of PCBs on cognitive  
decline/dementia in older subjects. These studies looked at PCB 
exposure in three different settings—an oil contamination/poisoning 
incident (Yucheng), environmental exposure through fish consumption, 
and a group of occupationally exposed workers. Each study demonstrated 

y PGE2 stimulates amyloid-beta by increasing expression of gamma secretase, one of the 
enzymes involved in producing amyloid-beta .
z Particulates and/or inflammation are noted in blood vessels as well as the tissue of  
the brain.
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an association of adult PCB exposure with dementia/cognitive impair-
ment. While PCB exposures in the oil contamination and occupational 
studies were relatively high, the exposures in the fish consumption 
study are closer to those in the general population.

One of these studies tested cognitive abilities in older adults 
who had been exposed to cooking oil contaminated with PCBs and 
PCDFs (another persistent organic pollutant) more than 20 years 
earlier. The study found, among women, significant dose-dependent 
reductions in attention and memory functions.aa 104 Another of these 
studies found older subjects who regularly consumed Great Lakes fish  
had impairments in memory and learning compared to controls.ab 105 
While each of these studies included additional contaminants, the 
contaminants were different in the two studies and the findings for 
PCBs were comparable. The third investigation, a retrospective study 
of over 17,000 PCB-exposed workers showed an excess of dementia 
mortality among women most highly exposed.106 ac These studies are 
consistent with prior research showing deficits in memory and learning 
in children exposed to PCBs before birth or in infancy.ad Animal studies 
as well have shown that exposure to various forms of PCBs reduced 
learning ability and spatial discrimination among other cognitive  
impairments.107-109 The epidemiological studies described are limited  
by their case-control design. Since they are not longitudinal, prospective  
studies, they cannot establish when the cognitive decline occurred.

Several epidemiologic and laboratory (in vitro) studies have linked 
exposure to PCBs as well as other persistent organic pollutants to inflam-
mation, diabetes,110 111 and metabolic syndrome.112 Low-dose PCBs have 
also been linked to atherosclerosis113 and obesity.114 Since these diseases 
are themselves risk factors for dementia/cognitive decline, PCB effects on 
cognitive decline/dementia might be mediated in part through these risk 
factors, as well as through direct PCB effects on the brain. These studies 
also provide further evidence that environmental chemicals can increase 
the risk of other diseases in the Western disease cluster.

The mechanisms whereby PCBs may cause neurodegeneration 
are not well understood.115 Some kinds of PCBs interact with the 
aryl hydrocarbon receptor (AhR), activating a family of enzymes 
(cytochrome P450 1A1 subfamily) that lead to oxidative stress and 

aa The study was a retrospective cohort investigation involving 162 subjects 60 years of age or 
older who had been exposed in the Taiwan oil contamination epidemic of 1979. 
ab The cohort study included 101 consumers of Lake Michigan fish, ages 49-86 years of age. 
ac Standardized mortality ratio = 2.04. PCB exposure in this study was estimated by history.
ad Other developmental effects of PCBs in children include impaired attention and IQ and 
hyperactivity. (See In Harm’s Way: Toxic Threats to Child Development p.78) 
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free-radical production.116 Various PCBs have also been linked to 
inflammatory activation of endothelial cells (a process linked to 
atherosclerosis),117 and to the impairment of long-chain fatty acid 
synthesis.ae 118 Since inadequate levels of long-chain fatty acids are 
implicated in dementia and cognitive decline (see the nutrition section 
below), the inhibition of long-chain fatty acid synthesis by PCBs may 
provide another plausible mechanism by which PCBs may promote 
cognitive decline/dementia. PCBs also affect the function of thyroid 
hormone, which is implicated in cognitive impairment as well.119 120

pesticides
Pesticides are used extensively in the United States and throughout 
the world. The licensing of over 18,000 American pesticide products 
and the application of over two billion pounds of pesticides per year 
to crops, homes, schools, parks, and forests creates the potential for 
pervasive human exposures.121 122

Many pesticides exert their killing effects through neurotoxic 
mechanisms. Historically, most attention was focused on acute 
effects to humans from relatively large exposures, but in recent 
years neurological effects from chronic, low-level exposures have 
been more widely studied in laboratory animals, people who apply 
pesticides, and the general public. Toxicologists and epidemiologists 
have been particularly interested in the neurodevelopmental 
impacts of the organophosphate family of insecticides because of 
their widespread use and resulting human exposures.123 Animal 
and epidemiologic studies of the neurodevelopmental impacts of 
organochlorines, carbamates, and pyrethroids are less extensive.

Acute high-dose effects of organophosphates include head-
ache, dizziness, nausea, vomiting, papillary constriction, sweating, 
tearing, and salivation. Severe poisoning may progress to seizures, 
arrhythmias, coma, and death. Many studies (reviewed in Kamel and 
Hoppin124 and others125) have documented chronic, lingering symp-
toms following acute high-dose organophosphate exposure, includ-
ing cognitive and psychomotor impairment, motor dysfunction, and 
reduced vibration sensitivity.126 127 128

Though studies are not fully consistent, a growing body of 
evidence demonstrates neurologic impacts at lower levels of chronic 
exposure to neurotoxic pesticides in adults as well, primarily in the 

ae Fatty acid metabolism is thought to be impaired due to PCB inhibition of the delta 5 and 
6 desaturase enzymes, preventing the elongation of fatty acids. 
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occupational setting.af 129 These impacts include neurobehavioral perfor-
mance impairments and sensory, motor, and nerve dysfunction. As noted 
in Kamel and Hoppin, most (though not all130 131) studies examining 
cognitive and psychomotor function have documented chronic impair-
ments in association with long-term, lower-dose occupational pesticide 
exposure. 132 133 134 Cognitive domains that are affected include memory, 
attention, visual-spatial processing, pattern memory, and others. Most of 
these were studies of organophosphate exposures, though a few exam-
ined the organochlorine DDT and fungicides. For example, chronic low-
level exposure to fungicides among French vineyard workers increased 
the risk of poor performance on tests of selective attention and working 
memory by a factor of 3.5. Tests of associative memory, verbal fluency, 
and abstraction were similarly impaired.135

Several studies have also found an increased risk for Alzheim-
er’s disease or dementia in association with occupational pesticide 
exposure.136 A six-year prospective study of 1,507 elderly people in 
France found that a history of occupational exposure to pesticides 
increased the risk of developing Alzheimer’s disease by a factor of 
2.39. An increased risk was not seen in agricultural occupations 
more generally.137 Another five-year longitudinal, population-based 
study in Manitoba found that a history of occupational exposure to 
fumigants/defoliants was associated with a 4.35-fold increased risk of 
Alzheimer’s disease.138 Several studies have also failed to find associa-
tions of pesticide exposure with Alzheimer’s disease.139 140

Very few studies have looked for chronic cognitive effects of 
pesticide exposure in adults outside of the occupational setting. One of 
these studies conducted in the Netherlands found that gardeners (as well 
as farmers) had an increased risk of having mild cognitive dysfunction 
at the outset of the study, as well as an increased risk of developing mild 
cognitive dysfunction over the three-year course of the study.141 Another 
study looking for an association of non-occupational exposure to pes-
ticides (based in part on records of herbicide and insecticide spraying 
and areas of residence) failed to find a link.142  The authors of this study 
noted several methodologic problems – including the use of retrospective 
exposure assessment and proxy respondents – that might have reduced 
the ability of the study to recognize an association if it did exist.

af Several issues in research methods contribute to the difficulty demonstrating the cognitive 
effects of pesticides at lower exposure levels. Notably, accurate prior exposure is especially 
difficult to determine in the absence of good biomarkers of cumulative exposure for most 
pesticides. Instead, exposure is generally assessed by history or occupational category. Since 
such methods typically provide imprecise estimates of exposure, the findings of such studies 
tend to under-recognize neurotoxic (and other) associations with low level pesticide expo-
sure, (Type II error). This under-recognition of actual associations, it should be noted, does 
not undermine the validity of any associations that are observed. (Kamel and Hoppin 2004) 
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In summary, many but not all studies find that acute high-dose 
and chronic lower-dose occupational exposures to some neurotoxic 
pesticides are linked to an increased risk of cognitive decline, dementia 
or Alzheimer’s disease. Data on the effects of chronic non-occupational 
exposure are too sparse to allow any conclusions. Research attempt-
ing to link chronic non-occupational pesticide exposures and cognitive 
impairment is especially hampered by the difficulty of distinguishing 
exposed from unexposed subjects (due in part to the lack of long-term 
exposure biomarkers). This difficulty leads to exposure misclassifica-
tion, which makes associations with low-dose exposure very hard to 
identify even if they do exist.

Links to Western Disease Cluster and 
Inflammatory Markers

Substantial epidemiologic evidence suggests that diseases that 
co-occur in the Western disease cluster are also risk factors 
for Alzheimer’s disease/dementia and cognitive decline. The 

evidence is strongest for diabetes but is also substantial for midlife 
hypertension, obesity and elevated total cholesterol. 

While each of these diseases is linked to Alzheimer’s disease/
dementia through multiple mechanisms, inflammatory disruption of 
insulin signaling provides an emerging common denominator and serves 
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as a framework as shown in the figure below. (Also see chapter 6 sec-
tions on the Insulin and Toll-Like Receptors cascades.) The backbone 
of this framework consists of inflammatory signaling—triggered by a 
variety of environmental factors and gene-environment interactions—
and the resulting disruption of insulin signaling. Disrupted insulin 
signaling in turn causes the metabolic and vascular consequences of 
diabetes: hyperglycemia (elevated blood sugar), hyperlipidemia (elevated 
blood lipids), and vascular disease. Since inflammation—and the associ-
ated oxidative stress—can be transmitted across the blood-brain bar-
rier, systemic inflammation/oxidative stress is also associated with brain 
inflammation/oxidative stress. These in turn are important drivers of 
neurodegeneration. Inflammatory disruption of insulin signaling in the 
brain may contribute to abnormalities that are commonly observed in 
Alzheimer’s disease, namely impairments in glucose metabolism and the 
synthesis of acetylcholine (a neurotransmitter whose production requires 
byproducts of glucose metabolism). Thus the Western disease cluster 
and Alzheimer’s disease/dementia can be seen in part as consequences of 
inflammation and the associated disruption of insulin signaling.

Though not all studies are consistent,ag an extensive and 
growing body of epidemiologic literature suggests the association 
of the Western chronic disease cluster illnesses with increased risks 
for Alzheimer’s disease/cognitive decline. One illustrative study 
(following over 1,400 middle-aged subjects for more than 20 years 
on average) found that midlife obesity, high total cholesterol, and 
elevated systolic blood pressure were all significant risk factors for 
dementia, each increasing the risk by approximately two-fold. The 
study also found the risks were additive, increasing the risk for 
dementia 6.2-fold when all factors were present.143 Below we focus 
on studies examining diabetes/hyperglycemia, obesity, metabolic 
syndrome, and increased inflammatory markers as risk factors for 
Alzheimer’s disease/cognitive decline.

Diabetes/hyperglycemia
Several large prospective cohort studies found that diabetes was  
associated with a greater risk of developing cognitive decline and 
dementia. A review of these studies estimated that diabetes increased 
the risk of Alzheimer’s disease by 50–100 percent and of vascular 
dementia by 100–150 percent.144 145 Interestingly, a four-year pro-
spective study of older women found the adjusted risk of developing 
cognitive impairment is increased not only among diabetics (1.79-fold), 
but also among those with minimally impaired glucose tolerance, 

ag See below for specific examples.
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defined as fasting glucose greater than 110 mg/dL 
(1.64-fold).146 Similarly, a large 10-year prospective 
study of nondiabetic women found that elevated 
fasting insulin levels also predicted faster decline in 
scores of verbal memory ability and cognition.ah 147 
Higher C-peptide levels, (indicating increased insulin 
secretion, which is characteristic of insulin resistance 
and type II diabetes), were also found to be predic-
tive of cognitive decline in older women without 
diabetes in the Nurses Health Study.148 This evidence 
of a link between hyper insulinemia and accelerated 
cognitive decline supports the hypothesis that insulin resistance  
(associated with inflammation and hyperinsulinemia) is an important 
contributing cause of cognitive decline and Alzheimer’s disease. 
Other mechanisms by which diabetes/hyperglycemia may increase 
the risk for Alzheimer’s disease/cognitive decline include neuronal 
damage from increased oxidative stress and advanced glycation 
end products (amino-sugar compounds that are increased in hyper-
glycemia and contribute to oxidative stress); reduced acetylcholine 
production resulting from reduced glucose availability;149 and insulin 
effects on amyloid-beta metabolism and vascular disease.150

Several studies have reported an interaction between diabetes 
and ApoE4 that increases the risk of developing Alzheimer’s disease. 
One of these studies reported the risk of Alzheimer’s disease increased 
by a factor of 4.58 among diabetics carrying the ApoE4 gene.151 152

Obesity
Numerous large prospective epidemiological studies have found 
midlife obesity to be associated with greater risk of dementia in later 
life153-158 (though not all studies are consistent159 160). For example, a 
27-year prospective study of over 10,000 men and women in the 
Kaiser Permanente Medical Group found that people who were 
obese in midlife had a 74 percent increased risk of dementia later in 
life, while overweight people had a 35 percent increased risk.161 At 
least three studies have found an association between increased body 
mass index (BMI) and cognitive impairment or decline.162 163 For 
example, in a study of more than 2,200 healthy workers 32–62 years 
of age, higher BMI was associated with both lower cognitive scores 
at baseline and greater five-year cognitive decline.164 Another cross-
sectional study in adults 54–81 years old found the combination of 

ah Cognitive status was determined by the Telephone Interview for Cognitive Status.
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greater waist circumference (or BMI) and higher blood pressure  
was associated with reduced executive function, manual dexterity, 
and motor speed. 165

Providing further support for the view that midlife obesity 
increases risks for cognitive decline, three recent imaging studies 
showed obesity in middle-aged and older adults was associated with  
a number of abnormalities in brain structure. Those abnormalities  
included reduced hippocampal166 and total brain volumes,167 increased 
white-matter hyperintensities168 (areas of increased signal intensity 
on MRI exams, thought to reflect small-vessel vascular disease),169 
and temporal lobe atrophy.170. Another imaging study found reduced 
levels of markers of neuron viability (n-acetylaspartate) and membrane 
metabolism (choline metabolites) in middle-aged subjects with increased 
BMI. These abnormalities were particularly evident in the frontal 
lobe, an area of the brain especially prone to damage during aging. 
These findings underscore concerns that obesity may contribute to 
abnormalities in brain structure and function in midlife, laying the 
groundwork for cognitive decline or dementia in later life.171

Metabolic Syndrome, Inflammation, and Oxidative Stress
Several172-175 but not all176 studies have found metabolic syndrome to be 
a risk factor for developing Alzheimer’s disease/cognitive decline. One of 
these found metabolic syndrome a significant risk factor specifically in 
the presence of increased inflammatory markers.177

An increase in one or more inflammatory markers is itself a 
risk factor for cognitive decline/dementia. Fully ten out of eleven large 
population-based prospective studies have shown positive associations 
between inflammatory marker elevations and subsequent cognitive 
decline or dementia/Alzheimer’s disease.178-187 While different studies 
have found different markers to be associated with increased risk,ai the 
consistent finding of an increase in one proinflammatory marker or  
another across different populations is notable. The one prospective 
study that did not find an association used a less sensitive outcome 
measure (a one-time measure of cognitive function rather than decline 
across two or more points in timeaj). This may have reduced the ability  
of the study to detect an effect if present.188 ak The association of 
increased inflammatory markers with cognitive decline/dementia is 

ai The different markers found to be associated with cognitive decline/dementia may reflect both 
differences in study characteristics (experimental design and measurement techniques) as well 
as potential differences in the populations studied (including different risk factors, nutritional 
profiles, toxicant exposures, and other poorly identified modifiers of inflammatory response).
aj Cognitive function is a one-time measure and does not account for baseline cognitive ability.
ak The study is ongoing and a report on the relation between CRP and cognitive  
decline is anticipated in the future. 
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supported by the very large body of evidence pointing to inflammation 
as key in the pathogenesis of dementia. This includes histopathology, 
epidemiology, gene polymorphism studies, and links between inflamma-
tory cytokines and microglial activation and amyloid-beta processing. 
(See chapter 6.)

While epidemiologic studies have not (to our knowledge) 
examined the role of oxidative stress in the development of Alzheimer’s 
disease/cognitive decline, an interesting recent study did look at oxidative  
stress—as indicated by oxidized LDL-cholesterol levels—as a 
predictor of metabolic syndrome. It followed over 1,800 middle-
aged adults for five years and found that oxidized LDL (determined 
at the outset of the study) predicted the development of metabolic 
syndrome in a dose-response fashion, with the highest quintile having 
a 3.5-fold increased risk of metabolic syndrome relative to the lowest 
quintile. Oxidized LDL also predicted the development of abdominal 
obesity, elevated fasting glucose, and high triglycerides.al 189

Social, Mental, and physical activity

A substantial body of evidence indicates that social, mental, 
and physical activity are inversely associated with the risks 
of Alzheimer’s disease/dementia and cognitive decline. This 

includes long-term human observation and controlled animal studies. 
The animal studies provide important corroborating evidence for the 
human observational studies, which are subject to certain difficulties 
that we will explain.

A body of relevant animal research literature has emerged in 
the area of “environmental enrichment.” This research demonstrates 
the relationship of cognitive performance—as measured, for exam-
ple, by performance on the Morris water maze, a test of memory—to 
variations in the cage environment. The cage environment is varied 
by changing the number of objects available for exploration or the 
number of animals in the cage. Two important and consistent find-
ings have emerged from this literature. First, and not surprisingly, 
rodents learn and remember better in an enriched environment. 
Second, neurogenesis (the creation of new nerve cells) is increased 
in an enriched environment, specifically in the hippocampus. One of 
the mechanisms reported to account for this remarkable finding is 
increased synaptic and dendritic growth. Other preliminary, as yet 

al Being in the highest (vs. lowest) quintile for oxidized LDL increased the risk of having 
abdominal obesity, elevated fasting glucose, high triglycerides, and metabolic syndrome by  
a factor of approximately 2.3.
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unreplicated findings include increases in brain-derived nerve growth 
factor and alterations in amyloid-beta levels.190 191 192

Human studies show analogous findings in the areas of social, 
physical, and mental activity. A recent review of 15 longitudinal 
studies found an increased risk of cognitive decline with reduced 
social networks (5 of 7 studies) and physical inactivity (6 of 7 stud-
ies). Increased dementia risk was also found in relation to reduced 
social networks (6 of 7 studies). While all studies were assessed as 
methodologically sound, the possibility that reduced social, mental, 
and physical activity is itself an expression, rather than a cause, of 
early dementia cannot be excluded.am 193 194 Thus, animal studies 
showing the benefits of environmental enrichment provide important 
corroborating evidence. Specific findings of human studies include 
the following:

 Substantial reductions were seen in the rate of cognitive decline •
among subjects with extensive social networks and social engage-
ment, in a group of over 6,000 African-American and Cauca-
sian elders followed for over five years.195 (The rate of cognitive 
decline was reduced 39% in subjects with high social network 
ratings, and 91% in those with high social engagement ratings.)

 Engaging in leisure time physical activity at least twice a week in •
midlife was associated with a greater than 50 percent reduction 
in risk of dementia/Alzheimer’s disease. This group was followed 
for more than 20 years.196

 Cognitive inactivity was associated with a 2.6-fold increased risk •
of developing Alzheimer’s disease, a higher incidence of mild cog-
nitive impairment, and more rapid decline in cognitive function 
in a group of more than 700 elders followed for up to 5 years.197

A growing number of studies have begun to clarify one 
mechanism in particular that may account for much of the pervasive 
benefits of exercise—for cognitive function as well as for cardiovas-
cular disease, diabetes, and other components of the Western dis-
ease complex. In brief, these studies suggest that exercise transiently 
increases reactive oxygen species (free radicals), and then strongly 
up-regulates antioxidant capacity. The net effect is that people who 
exercise regularly have reduced ongoing levels of oxidative stress and 
inflammatory burden.198-200

am The technical term for this problem is reverse causation. 
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psychosocial Stress

Social, mental, and physical activity also help moderate the 
effects of psychosocial stress—broadly defined as a variety of 
states associated with distress, namely depression, anxiety, social 

isolation, chronic life stress, personality traits, and other individual 
or community characteristics.201 Psychosocial stress is well estab-
lished as a risk factor in cardiovascular disease. While the role of 
psychosocial stress in dementia/cognitive decline is complex and 
incompletely understood, a growing body of evidence suggests an 
emerging key role in the development of dementia/cognitive decline.

Though relatively few epidemiologic studies have looked at 
the role of stress in neurodegenerative disease, the studies that do 
exist suggest that psychosocial stress has an important influence in 
the development of cognitive decline and dementia. Numerous stud-
ies suggest that depression is a risk factor for later development of 
Alzheimer’s disease.202 203 Though some studies suggest depression is 
a very early (prodromal) symptom of Alzheimer’s disease rather than 
a risk factor for the illness,204 205 a recent meta-analysis of 20 studies 
found that a history of depression approximately doubled the risk 
for the later development of Alzheimer’s disease.an 206 Similarly, recent 
prospective cohort studies found the tendency to experience psycho-
logical distress was associated with  a tenfold increased risk in epi-
sodic memory declineao 207 and a 2.7-fold increased risk of developing 
Alzheimer’s disease.208 An anatomic basis for the association of stress 
and Alzheimer’s disease/cognitive decline is suggested by observations 
that major depression and post-traumatic stress disorder are associ-
ated with smaller hippocampal volume,209 210 though not all studies 
are consistent.211

A substantial body of work describes multiple mechanisms link-
ing stress with increased risk of Alzheimer’s disease/cognitive decline. 
One key mechanism is provided in the hypothalamic-pituitary-adrenal 
(HPA) axis—or “stress circuit.”ap This axis links depression, anxiety, 
or other stressors with a cascade of events involving the hypothalamus 
and pituitary in the brain (which increase corticotropin-releasing hor-
mone [CRH] and adrenocorticotropin [ACTH], respectively) and the 
adrenal glands (which increase cortisol, epinephrine, and norepineph-
rine). These hormones increase blood pressure, heart rate, and blood 

an The odds ratio was 1.9 in cohort studies, and 2.03 in case control studies.)
ao The 90th and 10th percentiles for being distress-prone were compared. 
ap The HPA Axis hypothesis was developed by Drs. George Chrousos, Chief of Pediatric and 
Reproductive Endocrinoology at the National Institute of Child Health and Human Develop-
ment, and Philip Gold of the Clinical Neuroendocrinology Branch at the National Institute 
of Mental Health. The theory is based on a large body of observational and laboratory data 
involving people and animals.

Psychosocial stress 
is well established 
as a risk factor 
in cardiovascular 
disease.
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sugar, among other effects. In addition, the sympathetic nervous system 
and a variety of other basic functions—including the immune and 
reproductive systems, growth, and gastrointestinal tract—are affected. 
Normally cortisol acts through a negative feedback loop to reduce 
CRH production, shutting down the stress activation after the threat 
has passed. In the presence of chronic stress, however, these hormones 
and systems are continually activated, contributing to risks for high 
blood pressure, elevated blood lipids, atherosclerosis, impaired growth 
in children, and reproductive dysfunction, among other effects.212

A variety of studies support a link between the HPA axis and 
Alzheimer’s disease/cognitive decline. Animal213 and/or human stud-
ies214 have shown stressful experience or depression was associated 
with increased levels of adrenal corticosteroids, and that these hor-
mones can damage the hippocampus (which has a high concentra-
tion of corticosteroid receptors215) and worsen damage from other 
neurological insults.216 Some studies suggest that elevated blood 
cortisol levels are related to clinical progression of dementia/cognitive 
impairment.217 218 Further, stressful experience and depression them-
selves may be associated with structural changes in the hippocampus 
and impaired forms of learning and memory.219 Providing additional 
support, recent studies in an Alzheimer’s mouse model showed that 
isolation stress over three months increased amyloid-beta levels in 
brain interstitial fluid by 84 percent. Acute restraint stress increased 
amyloid-beta levels within hours, an effect that was mediated by 
CRH.220 Isolation stress in this model has also been associated with 
impairment in memory function, decreased neurogenesis, and greater 
amyloid-beta deposition.221

Endothelial dysfunction provides another mechanism link-
ing psychosocial stress with cardiovascular disease in animals and 
humans. 222 223 Since vascular disease associated with endothelial 
dysfunction increases risks for dementia, the linkage of psychosocial 
stress to endothelial dysfunction may also contribute to cognitive 
decline/dementia.

Psychosocial stress has also been linked with elevated 
cytokine production. Several studies in people show that chronic 
stress increases age-related proinflammatory cytokine production.224 
One of these showed that the rise in IL-6 cytokine levels over a 
six-year period was four times greater in a group of 119 stressed 
spouses caring for partners with Alzheimer’s disease than in non-
stressed controls.225 Another cross-sectional study of 43 older adults 
showed a similar relationship of higher cytokine levels in associa-
tion with greater depressive symptoms.226 Interestingly, higher ratios 

Psychosocial 
stress has also 
been linked with 
elevated cytokine 
production.
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of omega-6:omega-3 fatty acids in the blood increased the associa-
tion of depression with cytokine levels in this study. In other words, 
the combined effect of depressive symptoms and higher omega-
6:omega-3 ratios increased proinflammatory cytokine production 
beyond the effect of either variable alone.aq A similar pro-inflamma-
tory effect of higher omega-6:omega-3 ratios was seen in the effects 
of exam stress on cytokine production (in stimulated blood speci-
mens) in a group of 27 university students.227 These and other studies 
underscore concerns about the potential aggravating role that high 
omega-6:omega-3 ratios in the American diet may play in promoting 
proinflammatory cytokine elevations in high-stress conditions.

Animal data also support the link between psychosocial stress 
and elevated cytokine production. Rats, for example, exposed to tail-
shock stress prior to injection with LPS produced more proinflamma-
tory cytokines, or produced them more rapidly, than did unstressed 
rats.228 Studies in stressed mice and in cell culture identified nora-
drenalin (also known as norepinephrine) as the factor activating—in a 
dose- and time-dependent fashion—NFkB expression. This identifies 
a specific pathway by which stress (via sympathetic nervous system 
and HPA axis activation) may promote mononuclear cell activation—
contributing to the development of cardiovascular and other chronic 
inflammatory diseases.229

Although studies have not yet—to our knowledge—examined 
the role of stress-induced cytokine elevations in the development of 
dementia/cognitive decline, a substantial body of prospective studies 
shows a consistent association of elevated cytokines with subsequent 
dementia/cognitive decline. (See “Metabolic Syndrome, Inflamma-
tion, and Oxidative Stress” above.)

Very few long term clinical studies have examined the potential  
effects of stress reduction on chronic diseases. One three-year ran-
domized controlled clinical trial showed impressive benefits of stress  
management on important markers of cardiovascular risk in subjects  
with established ischemic heart disease. In addition to showing reduced  
depression and distress, subjects randomly selected to practice stress 
reduction had reduced ischemia and improved cardiac function during  
mental-stress testing, improved endothelial function (as measured by 
flow-mediated dilation) and enhanced autonomic activity (as indicated 
by improved heart rate variability and baroreflex sensitivity).230 ar 
Relaxation techniques have also been shown to reduce blood 

aq Together these two factors accounted for accounted for 18% of the IL-6 and 40% of the 
TNF-aα variance.
ar The stress management program consisted of 1.5 hours per week of instruction in stress 
management skills, muscle relaxation, and imagery techniques for 16 weeks.
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pressure by 5–10 mm in some subjects.231 In addition, numerous 
uncontrolled, non-randomized, short term pilot studies suggest that a 
variety of stress reduction techniques (yoga, mediation, mindfulness 
based stress reduction) may be beneficial, and merit further investiga-
tion. These studies found improvements in various cardiovascular, 
immune, endocrine, autonomic and psychometric indicators after 
short term use of stress reduction techniques. Two large randomized 
trials did not find a benefit of stress management on cardiac morbid-
ity and mortality. This may be due to the fact that the stress manage-
ment did not reduce emotional distress.232 233

In summary, psychosocial stress, an established risk factor 
for cardiovascular disease, is increasingly linked to cognitive decline/
dementia. Chronic activation of the HPA axis, or stress circuit, 
appears to play a key role in mediating this risk, and is associated 
with hippocampal damage, elevated amyloid beta levels and dementia. 
Stress and HPA activation are also associated with increased cytokine 
production, which in turn has been associated with cognitive decline/
dementia in a large body of studies. Clinical intervention studies 
are difficult to design and conduct, and few long term randomized 
controlled trials have been done to examine the effects of stress 
reduction on chronic illnesses of the Western disease complex. None 
the less, one three-year randomized controlled trial showed impressive 
benefits of stress management on important markers of cardiovascular 
risk in subjects with established ischemic heart disease.

Socioeconomic Status and education

The relationship between socioeconomic status and dementia risk 
is complex and data are somewhat inconsistent. Difficulties arise 
because lower socioeconomic status is often associated with 

poor nutrition, lifetime exposures to environmental pollutants, less 
education, stress, and sometimes unhealthy behaviors. Most, but not 
all, studies show that less education is associated with an increased 
risk of dementia/Alzheimer’s disease. One study shows that the 
higher risk of dementia associated with less education is independent 
of unhealthy lifestyle factors, such as smoking.234 When education 
and socioeconomic status are each evaluated, less education seems 
to be the more important determinant of risk.235 The combination 
of low socioeconomic status and elementary school–only education 
increased the risk of Alzheimer’s disease threefold compared to 
people with high socioeconomic status and higher education. Some 
data also show that clinical symptoms of dementia appear earlier 
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in people of lower socioeconomic 
status when compared to people 
of higher socioeconomic status, 
including those with more objective 
evidence of brain volume loss and 
pathology on imaging.236 These find-
ings suggest that the combination 
of lower socioeconomic status and 
less education is a combination that 
may accelerate the onset of demen-
tia/Alzheimer’s disease and that 
increased brain reserve, associated 
with more education, may be some-
what protective.

Nutritional Factors

The critical importance of dietary 
factors is now recognized in the 
prevention and treatment of dia-

betes (particularly type II) and cardio- 
vascular disease. 237 238 Similarly, 
dietary factors are emerging as criti-
cal factors in cognitive function and 
brain aging. 239-241 Not unexpect-
edly, the dietary factors that reduce 
risks of diabetes and cardiovascular 
disease likewise likewise appear to 
reduce risks for cognitive decline/
dementia.242 While many studies have 
focused on single nutrients, com-
bined effects of various nutrients and 
broad dietary patterns are also vitally 
important. This was illustrated in 
one epidemiologic study that found if 
only one “good” dietary habit—such 
as either omega-3 fatty acid or fruit/
vegetable consumption—was present, 
it did not provide protection against 
the development of dementia. How-
ever, if these two “good” dietary habits 
were present, the risks were signifi-
cantly reduced (hazard ratio 0.72). 243

Difficulties Studying the Impacts of Nutritional 
Factors in Cognitive Decline/Dementia

Scientific studies examining the impacts of nutrition on disease 
risks are difficult to design and implement in a way that 
produces valid information. as a result, the existing literature 

is often ambiguous. Long ago, the field of nutritional science 
adopted the habit of studying the diet as a collection of nutrients 
that could be manipulated and examined one by one rather than 
as a complex mixture of relationships. perhaps this approach 
gained currency when single vitamin deficiencies were discovered 
to cause specific diseases and fortification programs reduced or 
eliminated the problem. But whatever the reasons, this approach 
is also consistent with the general reductionist approach to science 
that dominated during the 20th century. More recent epidemiologic 
studies are beginning to study the impacts of various patterns of 
eating rather than of single foods or nutrients.

Whether focused on single nutrient or dietary patterns, clinical 
nutrition studies are inherently difficult for a number of reasons. 
For example, dietary exposure to various nutrients is usually esti-
mated mainly through the use of food frequency questionnaires, 
which have substantial uncertainties. While biomarkers (such as 
omega-3 levels in the blood) may provide more reliable evidence 
of dietary consumption, such biomarkers of consumption are 
usually unavailable or unaffordable. another problem is that the 
consumption of a given food (such as fish) also entails not eating 
other foods (such as fast food). It can be difficult to differentiate 
the effects of what is being eaten from the effects of what is not 
being eaten. another difficulty is that long latencies for develop-
ment of dementia require long duration for prospective studies, 
further driving up the cost of the study. Further, since food choices 
are often part of a pattern of broader healthy choices, it may be 
difficult to control for residual confounding by these other choices.

and finally, the gold standard for evidence—the randomized, 
controlled clinical trial—is virtually impossible to conduct, in part 
because it is very difficult to blind subjects to what they’re eating. 
In addition, long-term dietary interventions are inconvenient and 
compliance requires an extraordinary effort on the part of subjects. 
thus, there is a notable lack of long-term nutritional intervention 
studies in the area of dementia/cognition—as in other areas as well.

Consequently, the understanding of nutritional factors in 
cognition must derive from other forms of inquiry—human 
observation, brief clinical investigations, and animal intervention 
studies. Such data have allowed important conclusions to be 
drawn in the areas of diabetes and heart disease that are key 
to the prevention of these diseases, despite the obstacles to 
conducting long-term nutrition intervention studies.
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The difficulty of defining and measuring dietary patterns and 
the lack of studies looking at multiple nutrient interactions limit the 
current database. Nonetheless, several general conclusions regarding 
nutritional influences of cognitive decline are supported by existing 
data. Here we briefly summarize some of the key conclusions.

Lipids
Lipids are important building blocks in the brain. They provide the 
key constituent of nerve cell membranes as well as the substrate for 
myelin that wraps nerve axons, providing insulation to preserve nerve 
impulses as they flow from one cell to another. Lipids are also key 
players in immune system function. In particular, saturated fatty acids 
activate, and polyunsaturated omega-3s reduce, the innate immune 
response (via Toll-like receptors, as discussed in chapter 6). In addi-
tion, omega-6 and omega-3 fatty acids modulate another major driver 
of inflammation, the eicosanoid system (prostaglandins, thrombox-
anes, and leukotrienes). With brain composition and immune function 
being intimately linked to the body’s lipid profile, it is not surprising 
that dietary lipids influence cognitive function and aging.

In general, a large body of studies, with a few exceptions, 244 245 
shows that saturated fat consumption is associated with increased 
cognitive decline/dementia, while omega-3 fatty acids are associated 
with reduced risks. This is discussed in greater detail below.

Saturated Fat and Cholesterol

Both human epidemiologic studies and controlled animal dietary 
experiments implicate saturated fat in impaired cognition and/
or dementia. Many prospective dietary studies have shown that 
increased dietary saturated fat consumption increased the risk of 
dementia by as much as two or three fold.246-255 One prospective 
study (Rotterdam) showed increased risk with saturated fat after two 
years of follow-up, though not after six years.256 Animal studies also 
implicate saturated fat. For example, young rats fed a high-saturated-
fat diet for three months showed impaired learning and memory  
relative to those fed low-fat chow. No impairment occurred with 
high poly- or mono-unsaturated-fat diets.257

Diets with high saturated- or trans-fat content adversely affect 
serum cholesterol,258 increasing LDL and decreasing HDL.259 260 
Several prospective epidemiologic studies have shown that elevated 
midlife serum cholesterol levels are a risk for Alzheimer’s disease/
cognitive decline.261-262 One study of 444 Finnish men, for example, 
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found that elevated blood cholesterol in midlife was associated with 
a threefold increased risk of developing Alzheimer’s disease in late 
life.263 Studies looking at cholesterol levels in later life have generally 
not found an association with Alzheimer’s disease/dementia risk.264 
This may be due to alterations in cholesterol metabolism and diet 
that occur early in the onset of dementia.265-267

Dietary and serum cholesterol may promote cognitive impair-
ment by increasing amyloid-beta generation and deposition.268-269 This 
is illustrated in a study in which a high-fat/high-cholesterol diet wors-
ened Alzheimer’s pathology, including amyloid-beta accumulation, in 
an Alzheimer’s mouse model. Plasma and central nervous system total 
cholesterol were strongly correlated with amyloid-beta.270

Omega-3 and Omega-6 Fatty Acids

Omega-3 and omega-6 fatty acids are both essential but their bio-
logical effects differ. Omega-3 fatty acids have anticlotting and 
anti-inflammatory properties.271 Their essential role in infant brain 
development has been recognized for decades. Only more recently 
have their effects on brain aging been explored. In laboratory stud-
ies, omega-3s have been shown to benefit learning and memory 
in rodents. Remarkably, omega-3s have also been shown to have 
striking benefits in older rodents. For example, DHA (a long-chain 
omega-3 fatty acid) supplementation in aged rats improved memory-
related learning, hippocampal fatty acid levels, and synaptic function, 
and reduced hippocampal oxidative markers.272 273 Another study 
showed that administering DHA to aged Alzheimer’s-prone rats 
reduced total amyloid-beta by more than 70 percent compared with 
low-DHA or control chow diets. Image analysis of brain sections 
showed plaque burden was reduced by more than 40 percent.274

A large body of human epidemiologic studies (11 of 13  
prospective and 3 of 3 cross-sectional studies) indicate that dietary 
omega-3s and/or fish consumption (the major source of long-chain 
omega-3 fatty acids) substantially reduce the risk of Alzheimer’s  
disease/cognitive decline.275-289  For example, a recent Minneapolis 
study of over 2,200 men and women aged 50–60 years found that 
intake of long-chain omega-3s (DHA and EPA) was associated with 
less decline in verbal fluency (odds ratio 0.74). Subjects with hyper-
tension and dyslipidemia showed greatest benefit, with the risk of 
verbal fluency decline reduced by about half (odds ratio approximately 
0.5).290 In addition, a double-blind, randomized, placebo-controlled 
clinical intervention study showed a mild positive effect of omega-3 
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fatty acids on the rate of cognitive decline in patients with very mild 
Alzheimer’s disease.291

Interestingly, a recent large prospective studyas found that the 
use of omega-6 oils—that was not offset by use of omega-3-rich oils 
or fish—more than doubled the risk of dementia (hazard ratio 2.12). 
This effect was not seen among ApoE4 carriers.292 Such an effect 
would be consistent with the role of omega-6 fatty acids as substrate 
for inflammatory mediators (eicosanoids) that are implicated in 
neuroinflammation. The potential for excessive omega-6 fatty acids 
to interfere in omega-3 fatty acid cognitive benefits is illustrated in an 
animal study showing that the reversal of learning impairmentsat in 
omega-3-deficient rats occurred only when omega-3s were restored to 
the diet and omega-6s were reduced. Restoring omega-3s alone (with-
out reducing the high intake of omega-6 fatty acids) did not reverse 
the learning impairment.293

Fruits and Vegetables
Though relatively few human epidemiologic studies have been done, 
most indicate that high intake of fruits and vegetables is associated 
with decreased risks of cognitive decline.294-300 This association is 
further supported by studies in animal models showing that fruit and 
vegetable extracts protect against cognitive and brain neuropathology  
from dietary oxidative stress in aged rodents.301 302 The benefits of 
fruits and vegetables are thought to be due to various antioxidant 
and bioactive components including vitamins E and C, carotenoids, 
flavonoids, and other polyphenols.303

antioxidants
Evidence from animal and laboratory studies shows that vitamin E 
and other antioxidant nutrients reduce oxidative and inflammatory 
damage.304 Limited prospective studies on the effects of food intake 
of vitamin E and vitamin C in humans, however, are inconsistent. 
Studies on the effects of vitamin C and E supplements have generally 
been negative. For vitamin E, this may be due in part to the fact that 
vitamin E supplements have traditionally contained only one of at 
least eight naturally occurring forms of tocopherol.305

polyphenols
Plant polyphenols are a large class of natural antioxidants suspected 
to be responsible for some of the health benefits of fruit and vegetable 

as The study followed over 8,000 French subjects for approximately 3.5 yrs.
at Learning was tested in a brightness-discrimination learning test. 
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consumption. In addition to antioxidant characteristics, polyphenols 
also demonstrate a variety of neuroprotective properties in animal 
and in vitro studies. The polyphenol curcumin, which is contained in 
the spice turmeric, for example, has been shown to inhibit amyloid-beta 
aggregation and fibril formation in vitro. When fed to aged Alzheimer-
prone mice with advanced amyloid accumulation,au curcumin reduced 
levels of amyloid and plaque burden.306 Similarly, blueberry extracts, 
highly concentrated with acanthocyanin polyphenols, have been shown 
to prevent and even reverse age-related deficits in neuronal signaling and 
cognition in rats.av 307 308 Blueberry supplementation was also shown to 
increase neurogenesis and improve memory performance in aged rats.309 
Polyphenols also act as free radical scavengers, regulate nitric oxide, 
inhibit cell proliferation, and reduce the immobilization of leukocytes. 310

Polyphenols can be subdivided into 10 or more classes based 
on chemical structure.aw Over 6,000 members of the flavonoid family 
alone have been identified,311 including acanthocyanins, found in 
high concentrations in blueberries;312 resveratrol, found in red wine; 
and catechins, in green tea and some cocoa and chocolate.

While the scarcity of studies does not yet permit conclusions 
to be drawn, limited laboratory, animal, and human epidemiologic 
evidence is highly suggestive that dietary polyphenols have a signifi-
cant neuroprotective influence.

Very few epidemiologic studies have looked specifically at the 
possible influence of polyphenols in cognitive decline/Alzheimer’s 
disease. Two studies in the French PAQUID cohort, with over 1,300 
participants, did find consistent flavonoid associations with improved 
cognition.313 314 Specifically, the studies found that flavonoid intake 
was associated with better cognitive function at baseline. At five 
years, the adjusted relative risk of dementia was approximately cut in 
half for subjects in the two highest tertiles of flavonoid intake com-
pared to the lowest. And at 10 years follow-up, subjects in the lowest 
quartile of flavonoid intake had lost an average of 2.1 points on the 
Mini-Mental State Exam, compared with a loss of 1.2 points among 
those in the highest quartile of flavonoid intake.

A recent review of prospective cohort studies315 found that 7 
of 12 studies showed flavonoid intake associated with reduced risk of 
coronary artery disease. One study in Welsh men316 found the opposite 

au Tg2576 mice, (carrying a mutant form of amyloid precursor protein), were raised on a 
Purina chow diet with 500 ppm curcumin added, until the age of 22 months.
av Some, though not all, improvements were also demonstrated in rats receiving spinach and 
strawberry extracts, also high in polyphenols.
aw All plant poyphenols share the chemical structural feature of a central aromatic ring with 
one or more hydroxyl groups. 
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association, though the results did not achieve statistical significance 
(p=0.1) and may have been influenced by methodology problems.ax

Vitamins B6, B12, Folate, and homocysteine
Homocysteine, an amino acid, is the byproduct of the metabolism 
of other amino acids (specifically the conversion of methionine to 
cysteine). While extreme elevations of homocysteine are caused by a 
rare genetic disorder (homocystinuria), mild-to-moderate elevations 
found in 5–7 percent of the population are most commonly caused 
by dietary deficiencies of folate, B12, and B6,ay 317 318 vitamins that are 
essential for homocysteine metabolism. Moderate elevation of homo-
cysteine is recognized as an independent risk factor for cardiovascular, 
cerebrovascular, and venous thromboembolic disease, (heart attacks, 
strokes and blood clots). The risks associated with homocysteine eleva-
tions, however, appear to be less than those associated with traditional 
cardiovascular risk factors.319-321 

Lowering homocysteine through vitamin supplementation  
has not been shown to be of benefit for cardiovascular or venous  
thromboembolic disease.322  Several large controlled clinical trials  
are now underway to assess the benefit of folate, B12, and B6  
supplementation in preventing cardiovascular disease.

Evidence linking homocysteine elevations (and/or inadequate 
intake of folate, B12, and B6) to dementia/cognitive decline is mixed 
but increasingly suggestive. One recent large observational study of 
over a thousand older subjects found elevated plasma homocysteine 
a strong risk factor for the development of dementia and Alzheimer’s 
disease.323 Another large observational study found that higher dietary 
folate intake (which reduces homocysteine) was associated with reduced 
risk of developing Alzheimer’s disease. Specifically, those in the highest 
quartile of folate intake showed half the risk of developing Alzheimer’s 
disease (compared to lowest quartile).324 These studies were notable for 
lasting 8 and 6 years. Two shorter observational studies—lasting 2.7 and 
3.9 years—did not see an association between dietary folate/B12/B6 and 
incidence of Alzheimer’s disease, perhaps because the observation time 
was too short to allow the effect to be seen.325 326 Further support for an 
association of homocysteine levels with cognitive decline is provided by 
a recent large cross-sectional study showing higher plasma homocysteine 

ax The result was thought potentially due to residual confounding, and/or possibly to the 
British habit of adding milk to tea, (the major source of flavonols in this population), inhib-
iting the absorption of flavonols.
ay Additional causes of mild-moderate homocysteine elevations include genetic defects, 
chronic medical conditions, pharmaceuticals, and other factors.
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levels are associated with silent brain infarcts and smaller brain volume 
on MRI in healthy, middle-aged adults.az 327

Recently, clinical intervention studies have begun to test the 
influence of the relevant B vitamins (and the resulting homocysteine 
lowering) on cognitive function over time. Results of these early inter-
vention studies—which have been limited by modest duration and 
sample sizes—have been mixed. 328-331 However, a recent trial with a 
larger subject number and longer duration ba found that folate supple-
mentation was associated with a 26 percent reduction in plasma 
homocysteine and improved cognitive functionbb compared to the 
placebo group.332 Additional intervention studies will be needed to 
confirm this emerging role of homocysteine in cognitive decline and 
the role of folate supplementation in preventing this increased risk.

Rich food sources of folate include legumes (lentils, chick peas), 
green leafy vegetables (spinach, turnip greens, lettuces), sunflower 
seeds, and certain other fruits and vegetables. Some breakfast cereals 
are fortified with folic acid. The USDA provides a database of selected 
food sources of folate (and other nutrients) which can be found at the 
USDA National Nutrient Database for Standard Reference.

Dietary patterns: the Mediterranean-type Diet
As mentioned above, there is increasing interest in the influence of 
dietary patterns rather than single nutrients on a variety of health 
concerns. A focus on dietary patterns can capture complex interac-
tions among many components that are difficult or impossible to see 
when looking at one or two nutrients individually.333

Interest in one such pattern, the Mediterranean diet, was first 
kindled by the work of Ancel Keys in the 1950s, who pointed out 
the very low rates of coronary disease and some cancers and long 
life expectancy on the island of Crete, despite high fat intake in the 
diet.bc While there is no single Mediterranean diet, the term is gener-
ally used to refer to diets characterized by high intake of vegetables, 
legumes, fruits, whole cereals, fish, nuts, and unsaturated fatty acids 
(especially olive oil); low-moderate dairy products; low saturated 
fats and meat; and regular moderate ethanol, primarily in the form 
az The study included over 1900 subjects in the Framingham Offspring Study in a cross-
sectional investigation.
ba Additional techniques included more sensitive outcome measures (testing specific cognitive 
domains rather than global performance), and statistical clustering of multiple raw test scores 
(to reduce variability of individual tests and improve the “robustness” of the measurements).
bb Improvements in cognitive function were found in memory, information processing speed, 
attention and concept shifting (similar to executive function), referred to by the author as 
sensorimotor speed.
bc It is now acknowledged that the benefits attributed to the Mediterranean diet in the Keys 
studies may have been influenced by poorly controlled co-variants such as physical activity.
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the work of Ancel 
Keys in the 1950s, 
who pointed 
out the very low 
rates of coronary 
disease and some 
cancers and long 
life expectancy on 
the island of Crete, 
despite high fat 
intake in the diet.
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of wine with meals. The benefits of the Mediterranean diet have 
generally been attributed to the combined effects of high content of 
antioxidants (in olive oil, vegetables, and fruits), high omega-3 fatty 
acids, low saturated fat,334 low glycemic index, and high fiber content 
(due to reliance on whole rather than processed grains). We use the 
term Mediterranean-type diet here to refer to other diets as well, such 
as the “prudent” diet, that share most of the above characteristics.

The Lyon Heart Study was the first clinical trial showing 
compelling health benefits—specifically a 73 percent reduction in 
recurrent heart attacks and a 70 percent reduction in total mortality 
in a group of over 600 patients randomly assigned to a Mediterra-
nean-type diet (vs. conventional medical dietary advice) following 
a heart attack.335 Subsequently, a large body of observational and 
intervention studies (though not all studies) have shown benefits of a 
Mediterranean-type diet on the spectrum of diseases in the Western 
disease cluster. Beneficial effects have been shown for diabetes,336 337 
obesity, metabolic syndrome,338 chronic inflammation,339 cardiovascu-
lar disease, and abnormal blood lipids.340

Several recent prospective studies have also demonstrated 
benefits of the Mediterranean diet in reducing cognitive decline341 and 
Alzheimer’s disease. One study following over 2,000 New York resi-
dents found that adherence to the Mediterranean diet over four years 
was associated with a risk of Alzheimer’s disease that was reduced by 
more than a third.bd 342 Another prospective study of 192 community-
living individuals with Alzheimer’s disease found that those in the high-
est third for adherence to the Mediterranean diet had a markedly lower 
mortality risk (OR 0.27) as well as nearly four years longer survival, 
relative to those in the lowest third for adherence.343

ethanol
Mild-to-moderate alcohol consumption has been recognized to have a 
protective effect against cardiovascular disease in middle-aged and older 
adults.344 Similarly, a growing body of evidence suggests that light-to-
moderate alcohol consumption is protective against dementia, 345 though 
high levels of alcohol intake and alcoholism itself are associated with 
cognitive dysfunction346 and dementia. The alcohol-dementia associa-
tion may also be complicated by other factors (including smoking, head 
trauma, and vitamin, antioxidant, and dietary deficiencies).347

Two large cohort studies showed substantial risk reduction for 
dementia (hazard ratio = 0.46-0.58) with light-to-moderate alcohol 
consumption.348 349 A study of over 11,000 US nurses also showed 
that consumption of one drink per day or less was associated with a 

bd OR= 0.6, comparing the most to least adherent thirds of the population

Adherence to the 
Mediterranean diet 
was associated 
with a risk of 
Alzheimer’s disease 
that was reduced 
by more than  
a third.
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reduced risk of cognitive impairment, (with relative risk compared 
with abstinence = 0.85).350 A recent meta-analysis of 23 studies con-
cluded that limited alcohol intake in earlier adult life may be protec-
tive against the development of dementia in later life. The relative 
risk for dementia and Alzheimer’s disease was approximately 0.6.351

The ApoE4 gene appears to modify—and potentially even 
reverse—the alcohol benefit. Several (though not all352) observational 
studies suggest that individuals carrying the ApoE4 gene do not 
benefit from mild-to-moderate alcohol intake.353 354 In a study of over 
1,300 French subjects (59–71 years old) followed for four years, non-
ApoE4 carriers who reported drinking two or more glasses of alcohol 
per day had a roughly 50 percent decrease in the risk of cognitive 
deterioration compared to nondrinkers. In contrast, those who car-
ried at least one ApoE4 gene showed a positive association between 
alcohol consumption and cognitive deterioration.355

Two studies showed a reduced risk of dementia only with 
wine consumption356 357 while others found no difference in risks 
according to beverage type.358 359

Mechanisms by which alcohol may exert protective effects are 
not clearly established, though the benefits of red wine consumption 
are thought to be due in part at least to the polyphenol resveratrol. 
Alcohol is also a modulator of fatty acid metabolism, specifically 
promoting higher levels of long-chain omega-3 fatty acids,360 361 
which are associated with reduced risk for cognitive decline/Alzheimer’s 
disease. It has been speculated that a “fish-like effect of moderate 
wine drinking” might partly explain the protective effects of wine 
drinking against cardiovascular disease.362 If so, it is possible that 
such an effect might play a role in the neuroprotective effect of lim-
ited alcohol consumption.

electromagnetic Field exposure
A growing body of epidemiological evidence suggests an association 
between occupational exposure to extremely low frequency magnetic 
fields (ELF-MF) and dementia/Alzheimer’s disease. ELF-MF are gener-
ated by electric-powered equipment,be among other sources. They are 
part of a spectrum of electromagnetic waves that run from gamma 
rays at the highest frequency end, through x-rays, ultraviolet rays, 
visible light, infrared radiation, microwaves, radio waves, very low 
frequency, and extremely low frequency waves at the lowest end. Most 
research has focused on long-term health effects in workers exposed to 
magnetic fields typically encountered by electric power installers and 
repairers, power plant operators, electricians, electrical and electronic 

be Power-frequency fields are typically 50–60 Hz.

A growing body 
of epidemiological 
evidence suggests an 
association between 
occupational 
exposure to 
extremely low 
frequency magnetic 
fields and dementia/
Alzheimer’s disease.
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equipment repairers, telephone line technicians, seamstresses, tailors, 
welders, carpenters, or others who operate electrical equipment.363 364

A recent systematic review and meta-analysis365 found a 1.6 to  
twofold increased riskbf for those occupationally exposed to electro- 
magnetic fields, using 14 published epidemiologic studies with adequate  
methodology.bg Another review prepared for the BioInitiative Working 
Group found six out of seven epidemiologic studiesbh generally positive 
for an association between ELF-MF and Alzheimer’s disease, with only 
one study failing to find an association.366

One of the mechanisms proposed to mediate the increased risk 
of Alzheimer’s disease with ELF-MF exposure is reduced melatonin 
production. Numerous epidemiologic studies (11 of 13 reviewed in the 
BioInitiative Working Group study) found that high ELF-MF exposure 
was associated with reduced melatonin production in occupational 
and residential settings. 367 Melatonin has been shown to be neuropro-
tective in a number of animal and in vitro studies. Melatonin effects 
include inhibition of amyloid beta neurotoxicity, oxidative stress in 
transgenic mouse models of Alzheimer’s disease, and proinflammatory 
cytokine production induced by amyloid-beta in rat brains.

Studies in humans show that although melatonin levels 
normally decline with age, the levels are more sharply reduced in 
people with Alzheimer’s disease, even in the earliest stages.368 369 One 
therapeutic trial in people with Alzheimer’s disease concluded that 
melatonin supplements can stabilize cognitive decline.370 Another 
study in people with Alzheimer’s disease in group homes showed 
that, although melatonin improved sleep patterns, its effects on 
cognitive function were beneficial only when combined with bright 
lights during the day.371 Melatonin supplementation also improved 
memory and learning in rat models of Alzheimer’s disease.372 Taken 
together, the evidence is suggestive that ELF-MF could potentially 
increase risk for Alzheimer’s disease by reducing brain levels of 
neuroprotective melatonin. Human studies have not yet been 
designed to study this hypothesis.

Other mechanisms proposed to explain potential ELF-MF effects 
on the brain and biological systems in general include oxidative stress, 
calcium ion release in immune cells and neurons, apoptosis and necrosis 
in brain cells, and effects on biomagnetic particles in the brain.373

bf The 1.6-fold increased risk was derived from cohort studies. The twofold increased risk 
was derived from case-control studies.
bg All included studies used standardized criteria for Alzheimer’s diagnosis, and most studies 
used quantitative estimates of EMF exposure.
bh Criteria for this study required expert diagnoses and restrictive classification of magnetic 
field exposure.

...this evidence 
is suggestive 
that extremely 
low frequency 
magnetic fields 
could potentially 
increase risk 
for Alzheimer’s 
disease by 
reducing 
brain levels of 
neuroprotective 
melatonin.
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Conclusion

We have reviewed a number of environmental factors that 
substantially influence the risks of Alzheimer’s/dementia and 
cognitive decline. These include elements of the chemical, 

nutritional, and social environment, as well as exercise and disease 
states—which are themselves responsive to many of these same influ-
ences. We turn now to examine the role of environmental influences 
in Parkinson’s disease. Subsequently, we will discuss opportunities 
in policy innovations (in chapter 9) and personal actions to address 
these influences and reduce the risks for neurodegenerative disease 
and related Western disease cluster illnesses.
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this figure illustrates some of the 
interacting factors in the modern 
chemical, nutritional, social and built 
environments that may be contributing 
to neurodegenerative disease. the 
vulnerability of a given individual to any 
of these factors will depend on how these 
factors interact over time in the “sea of 
conditions” affecting the individual – 
including her/his genetic make-up.  
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Stories of Life Weave the Fabric of 
the Intergenerational School

Neuroscientist peter J. Whitehouse MD phD 
helps people weave the stories of their lives 
through memories, aspirations, and active 

participation in healthy living.

Whitehouse—a professor at Case Western reserve 
University, medical doctor, expert in alzheimer’s 
disease, bioethicist, educator, author, and innovator—
thinks beyond the brain as an isolated organ and 
into the ecology of the world and the systems that 
enhance prosperity and wellbeing. he is dedicating 
his life to ensuring that everyone, including those 
facing cognitive challenges, has a chance to tell 
personal tales of triumph and tribulation and live fully 
through the end of life. 

Whitehouse and his wife 
Cathy, a psychologist, 
founded the Intergen-
erational School in 2000. 
the Cleveland public 
charter school is an 
award-winning institution 
for about 145 students in 
grades K-8 as well as a 
nurturing environment for 
over 30 volunteer adults 
and seniors.

the goal of the school, located at the Fairhill Center 
for aging, is to promote life-long learning keyed 
to developmental learning stages and “a sense of 
community, a sense of purpose, a sense of legacy.”

a glowing profile in a U.S. Department of education 
newsletter noted that in 2006 the Intergenerational 
School was one of just 21 high-poverty schools state-
wide in which 75 percent of students passed Ohio’s 
standardized reading test.  In 2007, 100 percent of 
third and fourth grade students passed this test.

everyone benefits as intergenerational relationships 
are fostered. Young students at the school support 
elders by visiting, telling and listening to stories, 
and developing friendships at local long-term 
care facilities. although many adult volunteers 
have memory or cognitive challenges, they 
mentor children in reading, arts, and hobbies and 
serve in such roles as library aides or technology 
troubleshooters. “the most important thing for the 
elders is that they have a sense that they are keeping 
their minds active,” said Dr. Whitehouse.

the stories of the volunteers are encouraging. Mrs. 
atwood, an african-american woman in her late 
50s who is beginning to have memory problems 
(and has two sisters with alzheimer’s in nursing 
homes), volunteers every two weeks. She begins on 
Wednesday to “joyfully” plan her thursdays at the 
Intergenerational School. the responsibility gives her 
focus and purpose.  another volunteer, Dr. Miller, holds 
a phD in the history of medicine and is a relative of 
Moses Cleaveland who founded the Ohio city. her 
participation with the children at the school helps 
keeps her disorientation and agitation at bay.

Danny George is Whitehouse’s co-author of a 
recently published book, the Myth of alzheimer’s, 

which challenges conventional ideas 
about the diagnosis and treatment of 
alzheimer’s. George has undertaken 
a systematic observation of the seniors 
who donate their time at the Intergen-
erational School to evaluate how their 
participation benefits their health.

the success of the Intergenerational 
School supports the hope that we can 
foster the sharing of intergenerational 
wisdom in an increasingly complex 
world, and thus sustain healthy cogni-
tion throughout life. It suggests that 

it is possible to weave a fabric of common stories of 
diverse life stages that become the shared narrative of 
a diverse world. 

LifeBook
LifeBook is an innovative program developed by Dr. 
Whitehouse and described in the Myth of alzheimer’s 
as a “practice in embracing mortality.”  By embracing 
mortality, we also embrace living fully.  LifeBook helps 
people consider issues important at the end of life, 
and can provide a rich portrait of a person’s life. the 
process suggests that people:

 tell the story of their life – through pictures, let-•
ters and other written materials

 envision what they want for end of life care•

 reflect on their legacy•

this can be a powerful and rewarding experience and 
enormously helpful to the individual as well as family, 
friends and caregivers.
For more information, go to the www.tisonline.org   
and www.themythofalzheimers.com

FOOD for
THOUGHT

Intergenerational School student and volunteer 
elder share life stories.  Photo: Peter J. Whitehouse.




